
Java Fundamentals for
Android™ Development

• Java Fundamenals topics.

• Lessons target beginners and allows a smoth start with android programming.

• Parctical lessons and instructions accompanied by relevant snapshots.

Version 7

By Android ATC Team

www.androidatc.com

Android ATC

Java Fundamentals for Android™
Development
Course Code: AND-404 version 7

Hands-on Guide to Java Programming

I

Java Fundamentals for Android™ Development AND-404

Java Fundamentals for Android™
Development
Course Code: AND-404 Version 7

© 2017 Android ATC

Published by: Android ATC

ISBN: 978-0-9900143-7-9

Price: Free

Information in this book, including URL and other Internet Web site references, is subject
to change without notice. Complying with all applicable copyright laws is the responsibility
of the user. Without limiting the rights under copyright, no part of this document may be
reproduced, stored in or introduced into a retrieval system, or transmitted in any form or
by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Android ATC.

Android ATC is not responsible for webcasting or any other form of transmission received
from any linked site.

Android ATC is providing these links to you only as a convenience, and the inclusion of
any link does not imply endorsement of Android ATC of the site or the products contained
therein.

Android ATC Company may have patents, patent applications, trademarks, copyrights,
or other intellectual property rights covering subject matter in this document. As expressly
provided in any written license agreement from Android ATC, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or
other intellectual property.

This “Java fundamentals for Android™ development” e-book is a detailed guide that
provides the basics to understand the Java programming concept. It is a combination of
theoretical and practical guide that covers skills and knowledge every developer should
learn before starting the Android development course.

At the time of writing this e-book, the latest version of Android OS released was 7
(Nougat) and that of Android Studio was 2.2. All exercises in this e-book were built to be
compatible with these latest versions. Since the update of both Android OS and Android
Studio is a continuous process, it is highly possible that any of these components has
already been updated by the time you start your training using this e-book. If this is the
case, you might notice some minor difference in the exercises’ steps and the screenshots
provided, depending on how a major an update has been.

II

Java Fundamentals for Android™ Development

This neither makes the lessons outdated nor the exercises incorrect. It is only impractical
to release a new version of the e-book for every update. This e-book targets trainees who
don’t have background in object oriented programming.

Android ATC Training team continuously works on providing the most up to date labs and
code samples. Nonetheless, we would like to apologize in advance in case any exercise
or screenshot is inaccurate.

Warning and Disclaimer:
This e-book is designed to provide information about Java development course for
free. Every effort has been made to make this e-book as complete and as accurate as
possible.

Exam
No exam is available for this course.

Trademark Acknowledge:
All terms mentioned in this e-book which are known to be trademarks or service marks
have been appropriately capitalized. Use of a term in this e-book should not be regarded
as affecting the validity of any trademark or service mark.

from work created and shared by Google and used according to terms described in the
Creative Commons 3.0 Attribution License.

Feedback Information:
As Android ATC, our goal is to create in-depth technical books of the highest quality
and value. Each book or e-book is crafted with care and precision, undergoing rigorous
development that involves the unique expertise of members from professional technical
community.

Readers’ feedback is natural continuation of this process. If you have any comments
regarding how we could improve the quality of this book, or otherwise alter it to better suit
your needs, you can contact us through email at: info@androidatc.com. Please make
sure to include the book title and ISBN in your message. We greatly appreciate your
assistance Android ATC Team.

III

Java Fundamentals for Android™ Development AND-404

Lesson 1: First Step in Java
The History of Java .. 1-2
How Java Programs work? ... 1-2
Install Java JDK and JRE .. 1-4
Why did Google choose Java over other programming languages?............ 1-8
Android OS Structure .. 1-8
Install Android Studio ... 1-9

Lesson 2: Create and Run Java Projects
Creating an Android Project (Java Project) Using Android Studio 2-2
Writing a Java Program ... 2-7
Java Methods ... 2-9
Running a Java Program ... 2-9
Write a Comment .. 2-15
Java Variables and Their Data Type... 2-16

Lesson 3: Control Flow Statements
Introduction .. 3-2
IF – Else Statement .. 3-2
If…Else and Else…If... Statement... 3-4
If Else and Logical Operators .. 3-5
Switch Statement ... 3-7
While Loop ... 3-8
Do-while Loop .. 3-10
For Loop ... 3-11
The Break Statement .. 3-13
The Continue Statement ... 3-14

Lesson 4: Methods and Arrays
Introduction .. 4-2
Method Structure ... 4-3
Call Method by Value .. 4-6
Call Method by Reference ... 4-8
Arrays ... 4-10
Enter Data to a Java Program .. 4-13
Object-Oriented Programming (OOP) Concepts .. 4-15
Java Class .. 4-18

Table of Contents

IV

Java Fundamentals for Android™ Development

· The History of Java

· How Java Programs work?

· Install Java JDK and JRE

· Why did Google choose Java over other programming languages?

· Android OS Structure

· Install Android Studio

Lesson 1: First Step in Java

1-1

First Step in Java AND-404

In the early 90s, extending the power of network computing to the activities of everyday
life was a radical vision. In 1991, a small group of Sun Microsystems engineers called the
“Green Team” believed that the next wave in computing was the union of digital consumer
devices and computers. Led by James Gosling, the team worked around the clock and
created the programming language that would revolutionize our world – Java.

The Green Team demonstrated their new language with an interactive, handheld home-
entertainment controller that was originally targeted at the digital cable television industry.
Unfortunately, the concept was much too advanced for the team at the time. But it was
just right for the Internet, which was just starting to take off. In 1995, the team announced
that the Netscape Navigator Internet browser would incorporate Java technology.

platform, following their acquisition of Sun Microsystems on January 27, 2010. This
implementation is based on the original implementation of Java by Sun.

Today, Java not only permeates the Internet, but also is the invisible force behind many of the
applications and devices that power our day-to-day lives. From mobile phones to handheld
devices, games and navigation systems to e-business solutions, Java is everywhere. Java
is, one of the most popular programming languages in use in the IT industry.

the following link: http://oracle.com.edgesuite.net/timeline/java/

the Oracle web site through the following link:

https://docs.oracle.com/javase/tutorial/

How Java Programs work?

software is called Java Compiler or IDE (Integrated Development Environment). We
have a lot of IDE software like Eclipse, NetBeans, Android Studio and others. They are

1-2

First Step in Java

The History of Java

called Javac. Here in this book, we will use Android Studio as the Java compiler.

The Java source codes which were written in Android Studio (IDE) will be considered as

moved to JRE (Java Runtime Environment). JRE in turn has a part called Class Loader ,

part of the JRE.

written to run and produce the output.

Java Program Work Flow

1-3

First Step in Java AND-404

The previous chart displays that there is a main part of creating and running Java
program called JDK (Java Development Kit), this software includes the part, which is
responsible to write and run the code and then send the result to the operating system.

Install Java JDK and JRE
To start creating the Java program, we must install the Android Studio (IDE) and to
install it, we need to install the prerequisites of it which are the JDK and JRE. You may

download link:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html

This Java SE kit which you will select includes the JDK & JRE thus your selection will
depend on your operating system which you have on your computer.

Select “Accept License Agreement”

screen:

Then, click Next on the following dialog box:

1-4

First Step in Java

On the following dialog box, click Next.

1-5

First Step in Java AND-404

Once the installation is complete, you will see the following screen. Click “Close” to

1-6

First Step in Java

To verify if you have successfully installed JDK on your Windows machine, follow the
steps below:

1. Open a command prompt by clicking Start Run, then type “cmd” , then click OK

2. In the window that opens, type java –version then press Enter if you are using
Microsoft Windows.

3. You should see the following message in the console if your installation was
completes successfully.

1-7

First Step in Java AND-404

Why did Google choose Java over other programming languages?

The basic advantages of having Java programming language for Android SDKs
(software development kits) are given below:

1. Java is a known programming language; developers know it. Java has yet again
emerged as one of the world’s most popular programming language. Also,
there are many engineers who specialize in Java making a vast developers’
community which collaborates with each other.

2. It’s harder to shoot yourself with Java than with C/C++ code since it has no
pointer arithmetic.

3. It runs in a VM, so no need to recompile it for every phone out there and Java is
easy to secure. This is Java’s very important feature. Running on a VM (thus no
recompiling) is a huge plus. Also, it easily separates processes from each other,
preventing a rogue application from destroying your phone or interfering with
other applications. Every App has assigned its own address.

4. As said in point number 1 above, since Java is the most popular programming
language, a large number of development tools are available for developers. Java
has huge open source support, with many libraries and tools that are available to
make developers life easier.

5. Several mobile phones already use Java ME, so Java is known in the mobile
industry and the engineering industry.

6. Also, Android as an operating system runs on many different hardware platforms
including smart TVs, Android wear etc. Given that almost all VMs JIT compile
down to native code, raw code speed is often comparable with native speed.
A lot of delays attributed to higher-level languages are less to do with the VM
overhead than other factors (a complex object runtime, ‘safety’ checking memory
access by doing bounds checking, etc.).

7. Java allows developers to create sandbox applications, and create a better
security model so that one bad App can’t take down your entire OS.

Android OS Structure
Before you start coding, you will learn Android OS structure on which your app will run.
Android uses Linux 2.6 kernel as the hardware abstraction, below is the Android OS
structure.

The below picture shows: Java code working on the application layer of the Android
operating system structure.

1-8

First Step in Java

Install Android Studio
Following are the steps to install Android Studio on your system

1. Open the following link to download Android Studio

https://developer.android.com/studio/index.html

1-9

First Step in Java AND-404

2. Click the “Download Android Studio” button.

3. Accept the terms and conditions then click on “Download Android Studio for

studio-bundle-xxx.xxxxxxx.exe, where xxx.xxxxxxx refers the build number.

Mac machine because the download webpage will automatically detect
your system.

4.

1-10

First Step in Java

Make sure that you have Java Development Kit (JDK) 6 or higher
installed on your machine to run Android studio . Android Studio
now comes bundled with OpenJDK 8. Existing projects still use

can switch to use the new bundled JDK by clicking File > Project
Structure > SDK Location and checking the Use embedded JDK
checkbox.

1-11

First Step in Java AND-404

5. Select the components you have to install and click, Next.

6. Click “I Agree” to move to next step.

1-12

First Step in Java

7. Next, you should specify the location of the Android SDK folder if you already
have the SDK installed on your machine. This is an important step to follow
if you want to use the already installed Android SDK tools, platforms, system
images...etc. instead of using the single platform and system image that come
with Android Studio installation bundle.

8. Next, click “Install” to start the installation process.

1-13

First Step in Java AND-404

9. Once installation is complete. Open the Android Studio and it will show following
loading screen.

Now, Android Studio is installed on your machine and ready to be used for Android
Development.

1-14

First Step in Java

· Creating an Android Project (Java Project) Using Android Studio

· Writing a Java Program

· Java Methods

· Running a Java Program

· Write a Comment

· Java Variables and Their Data Type

Lesson 2: Create and Run Java Projects

2-1

Create and Run Java Projects AND-404

Creating an Android Project (Java Project) Using Android Studio
It’s important to know that Android studio isn’t built for Java development; it is specialized
for building Android applications, so you will not be able to create “New Java Project” in
Android Studio. Instead, you will be creating an Android project containing a Java library by
which you will be testing your Java Code.

1. Open Android Studio

2. To create an Android project Click : “Start a new Android Studio project” ,to get
the following dialog box:

3. Write the Application Name: First Lesson, Company Name here consists of three words
separated by dot and in this example project write java.androidatc.com and the Project
location you should select where the project will be saved, then click Next.

in the Google Play store. This means that once you have published an app
with this package name, you can never change it; doing so would cause
your app to be treated as a brand new app, and existing users of your app
will not see the newly packaged app as an update.

2-2

Create and Run Java Projects

4. On the next dialog box, there are some details about the description of the
Android device which this application will run on. You will learn about this
dialog box in the Android Application Development course. Keep the default

Next.

5.
click Next.

2-3

Create and Run Java Projects AND-404

6.
explained in details in the Android Application Development course- click Finish.

7. After clicking the Finish button, creating the application process starts and you will
see the following process:

8. You will get the following screen:

2-4

Create and Run Java Projects

D:\Java_Training\FirstLesson

9. To create Java Library, click on File menu New New Module...

10. In the image below, we will get the below dialog box. Select “Java Library” and click Next.

2-5

Create and Run Java Projects AND-404

11. In the following dialog box, enter the “Library name”: libTest and the “Java class
name”: Main and then click Finish.

You will get the following illustrator on the left side of the Android Studio:

 In the left side, there are three main elements where the solution explorer resides:

1. App

2. Libtest (Library Name)

3. Gradle Scripts

Note: You will be dealing with only the Libtest module, where you will be writing the Java Code.

2-6

Create and Run Java Projects

Writing a Java Program
Java program or Java project consists of group of classes; each class will achieve part
of a Java program.

At the start of each project you should start with write class, to create a class you must
consider the following three items:

1. Class type (Public, Private, or Protected).

2. Write “class” keyword to declare the class.

3. Next to “class” keyword is the name of your java class.

The following image may display what I mean more:

The following screenshot shows the Main class you have created.

Each Java project consists of group of classes, and there are three types of classes:

1. Public is the default class type and it exposes the class to other classes outside the package
which means any class can refer to the field or call the method of the public class

2. Private hides from other classes within the package, which means that only the

2-7

Create and Run Java Projects AND-404

3. Protected is a version of public restricted only to subclasses, which means that only
the current class and subclasses (and sometimes also same-package classes) of

 Before starting Java with Android Studio keep in mind the following:
1- The red marks in Android Studio refer to compile-time errors in your Java

code. A compile-time error (also known as a compiler error) is an error that
prevents the computer from translating your code.

2- Java is case-sensitive, which means that system.out.printLn isn’t the same
as System.Out.Println

Java class starts with the following function:

Public static void main (String args[])

The following table displays what’s the meaning of each part:

Public means that main () can be called from anywhere.

Static

Void means that main() returns no value

Main main is the name of a function. Main () is special because it is the start
of the program.

String means the data type

Args args is the argument passed to the function. “args” is not special; you
could name it anything else and the program would work the same.

The Java program will include the following at the start:

Public class Main {

 public static void main (String args[])

 {

 }}

2-8

Create and Run Java Projects

Java Methods
If you run the above code it will not give you any result, you have to add the Java

A Java method is a collection of statements that are grouped together to perform an
operation.
When you call the System.out.println() method, for example, the system actually
executes several statements in order to display a message on the console.

Print out on screen method:
The following example will show how you can use the System.out.println() method to
print out whatever is written between the two parentheses:

public class Main {

 public static void main (String args[])
 {
 System.out.println(“Hello Android ATC”);
 }}

When you will run the above class you will get Hello Android ATC as output on the screen.

Running a Java Program
You can run a Java class by clicking the run button on the Android Studio tool bar.

Or by press Shift + F10 keys.

2-9

Create and Run Java Projects AND-404

Also, you can run the class by right clicking anywhere on the class and then select

which is asking you about the device details that the Java code will run on. The Java
code in Android Studio can be tested on phone, tablet, wear or TV.

Click the wizard button which is beside the Android virtual device

2-10

Create and Run Java Projects

Then, click “Create Virtual Device...” button.

Select “Nexus 5” under “Phone” category as displayed on the hardware device, then click Next.

In the following screen, click Next.

2-11

Create and Run Java Projects AND-404

Finish in the following screen:

2-12

Create and Run Java Projects

You will get the following screen:

You will get the following:

Now when you will run the below class code again, it will ask again about the virtual
device, this time select “Nexus 5 API 24” as Android virtual device and click “Ok” to see
the output of your code.

2-13

Create and Run Java Projects AND-404

You will see the following output, where you will get the “Hello Android ATC” text printed.
This text can be anything you wrote above between parentheses of System.out.println.

Add more text using the System.out.print as shown below:

public class Main {

 public static void main (String[] args) {
 System.out.print(“Hello Android ATC”);
 System.out.print(“Java Fundamentals for Android™ Development”);
 System.out.print(“Android™ Application Development”);
 System.out.print(“Android™ Security Essentials”);
 System.out.print(“Monetize Android™ Applications”);
 System.out.print(“For more information check www.androidatc.com”);

}}

2-14

Create and Run Java Projects

When you run the Java program you will get the following result:

All the output of the System.out.print methods will be on the same line; however, if you replace
System.out.print method with System.out.println in the previous code, we will get
the following result:

Write a Comment
line comments or block

comments.

Line comments:
Any line starting with double forward slash the Java compiler will consider it as
comment, which means that this part will not run or appear to those who use this
application, it will remain internal. Comments are used to write short description about
different parts of the Java program.

2-15

Create and Run Java Projects AND-404

Example:

public class Main {

 public static void main (String args[])
 {

 System.out.println(“Hello Android ATC”);
 }}

Block comments:
It is like a line comment but it includes more than one line and it starts with /* and
ends with */. This is used to add multiple lines as comments in the code without
adding // in start of each line.

Example:

public class Main {

 public static void main (String args[])
 {
 /*
 This is a block comment
 It consists of more than one line
 I can write here info about this part of Java program
 */

 System.out.println(“Hello Android ATC”);
 }}

You can comment or uncomment any line or multiple lines of code in addition to
adding description about code.

Java Variables and Their Data Type
A Java variable is a piece of memory that can contain a data value. Variables are typically
used to store information which your Java program needs to do its job. A variable thus has
a data type. All variables in Java must be declared before they can be used

For example:
Int x=1;

2-16

Create and Run Java Projects

data type determines the values it may contain, plus the operations that may be
performed on it. We have two categories of data types as follow:

1. Primitive data types.

2. Composite data types.

 A primitive data type uses a small amount of memory to represent a single item of
data. It is preserved by the programming language and reserved keywords are used
for naming the primitive data types. In addition to int, the Java programming language
supports seven other data types. The following table displays the Primitive data types:

Data
Type

Description Default
Value

byte The byte data type is an 8-bit signed integer. 0

short The short data type is a 16-bit signed integer. 0

int
The integer data type is a 32-bit signed integer. It has a
maximum value of 2,147,483,647.

0

long The long data type is a 64-bit signed integer. 0L

float The float data type is a single-precision 32-bit floating point. 0.0f

double The double data type is a double-precision 64-bit floating point. 0.0d

Boolean The Boolean data type has only two possible values: true and false ‘\u0000’

char The char data type is a single 16-bit Unicode character. null

Composite data types will be explained in the next lessons.

Java has the following rules and conventions for naming variables:
· Variable names are case-sensitive and white space is not permitted.

· Beginning with a letter, the dollar sign “$”, or the underscore character “_” is allowed

· Subsequent characters may be letters, digits, dollar signs, or underscore
characters.

· By convention, you should name your variables using “camel case”, i.e. if the
name consists of only one word, it is all lowercase letters. If it consists of

· Also by convention, constants are all capitalized and contain underscore.

2-17

Create and Run Java Projects AND-404

The following is an example which will show how to declare two integer variables (a &
b) and declare the another variable c which will be the sum of a & b

public class Main {

 public static void main (String args[])
 {

 System.out.println(“Hello Android ATC”);

 int a=1;
 int b=2;
 int c=a+b;
 System.out.println(c);

 }}

When you will run this Java program, you will get the following result:

2-18

Create and Run Java Projects

We can modify the previous code by modifying the print method as follows:

public static void main (String args[])
{

 System.out.println(“Hello Android ATC”);

 int a=1;
 int b=2;
 int c=a+b;
 System.out.println(“a+b= “ + c);

}}

The output of run the previous code will be as follows:

The following code is another way to write the same previous Java code and it will
give the same previous run result:

public class Main {

 public static void main (String args[])
 {

 System.out.println(“Hello Android ATC”);

 int a;
 a=1;
 int b;
 b=2;
 int c;
 c=a+b;
 System.out.println(“a+b= “ + c);

 }}

2-19

Create and Run Java Projects AND-404

Unlike the previous examples, in the code above you declared the variables and then
initialized them in the next line, whereas in the previous examples you declared and
initialized the variables in the same line.

One of the main points to know while dealing with variables and objects is to know
their life cycle.

The life cycle of an object starts with the declaration, in this phase you will be
allocating the necessary space, second phase is to initialize your variable. After that,
the object will reside in the memory until you destroy your object or when it reaches
the end of its life cycle. Your program consists of many scopes and your object will
remain accessible within its scope.

Assignment statement and Assignment Expressions
An assignment statement in Java uses the assignment operator (=) to assign the

assignment is done in Java:

Variable = expression;

Example:

int a = (b * c) / 4;

A compound assignment operator is an operator that performs a calculation and an
assignment at the same time. All Java binary arithmetic operators (that is, the ones
that work on two operands) have equivalent compound assignment operators:

+= Addition and assignment

-= Subtraction and assignment

*= Multiplication and assignment

/= Division and assignment

%= Remainder and assignment

For example, the statement

a += 10; is equivalent to a = a + 10;

More about these operators will be explained later.

2-20

Create and Run Java Projects

The following are more examples about the data types Java:

Boolean data type:
A boolean data type can hold only two values- true or false.

Example:

Public class Main {

 public static void main (String[] args) {
 boolean a=true;
 boolean b=false;

 System.out.println(a);

}}

The run result of this code is as follows:

char data type:
The char data type is used to store a single character such as ‘a’, ‘Z’, ‘9’, ‘&’, ‘$’ and so
on. Characters may be letters, digits or special symbols. A character can also be a
non-graphic symbol such as a new line or a tab. Characters are always enclosed in
single quotes.

If you wish to store the value ‘$’ in a variable x, you would write the following statement:

char x = ‘$’;

2-21

Create and Run Java Projects AND-404

Example:

public class Main {

 public static void main (String[] args) {
 char x=’$’;
 char y=’A’;
 char z=’a’;
 char m=6;
 char q=20;
 int w=m+q;
 System.out.println(x);
 System.out.println(y);
 System.out.println(z);
 System.out.println(m);
 System.out.println(q);
 System.out.println(w);

}}

The following is the output of the code written above.

String data type:
String data type is used to store words or sentences.

2-22

Create and Run Java Projects

Example:

public class Main {

 public static void main (String[] args) {
 String x=”Hello Android ATC :”;
 String y=”Java Fundametals for Android “;
 System.out.println(x + y);

}}

The following is the output of the code written above.

Float data type:

precision is faster on some processors and takes half as much space as double
precision, but will become imprecise when the values are either very large or very
small. Variables of type float are useful when you need a fractional component,
but don’t require a large degree of precision. For example, float can be useful when
representing dollars and cents.

The following image shows that when you declare variable x as float without fractional
components you will not get any compile time error, however; if you declare another
variable with fractional component you will get red underline as shown in the image
below, that can be solved by adding character “f “ at the end of the number.

2-23

Create and Run Java Projects AND-404

The next screenshot displays that red underline has been removed after adding the
character “f” at the end of the float number:

Double data type:
Double precision, as denoted by the double keyword, uses 64 bits to store a
value. Double precision is actually faster than single precision on some modern
processors that have been optimized for high-speed mathematical calculations. All
transcendental math functions, such as sin(), cos(), and sqrt(), return double values.
When you need to maintain accuracy over many iterative calculations, or are
manipulating large-valued numbers, double is the best choice.

2-24

Create and Run Java Projects

The following example displays how you can declare some variables as float and

public class Main {

 public static void main (String[] args) {

 double s=0.0123456789111111111111111111111111;
 double w=0.0123456789111111111111111111111111333333333334567;

 System.out.println(“x=” + x);
 System.out.println(“y=” + y);
 System.out.println(“z=” + z);
 System.out.println(“s=” + s);
 System.out.println(“w=” + w);

}}

The following is the output of the code written above.

Numeric type Conversions
Casting between primitive types enables you to convert the value of one type to
another primitive type. It most commonly occurs with the numeric types, and there’s
one primitive type (Boolean) that can never be used in a cast. Boolean values must be
either true or false and cannot be used in a casting operation.

In many casts between primitive types, the destination can hold larger values than the
source, so the value is converted easily. An example would be casting a byte into an
int. Because a byte holds values from –128 to 127 and an int holds from -2.1 billion to
2.1 billion, there’s more than enough room to cast a byte into an int.

2-25

Create and Run Java Projects AND-404

You can often automatically use a byte or a char as an int; you can use an int as a
long, an int as a float, or anything as a double. In most cases, because the larger type
provides more precision than the smaller, no loss of information occurs as a result.
The exception is casting integers to floating-point values; casting an int or a long to a
float, or a long to a double, can cause some loss of precision.

The following example displays how you can work with different data types in the
same Java program without writing any extra command to convert part of them to
another data type:

public class Main {

 public static void main (String[] args) {

 int a=1;

 b=a;
 System.out.println(“a=” + a);
 System.out.println(“b=” + b);

}}

The output of this code is the following:

We can use a Java method to establish relationship between two different data types
as is illustrated in the following example:

public class Main {

 public static void main (String[] args) {

 Integer a = 7;

 System.out.println(b);
 System.out.println(a);

 }}

2-26

Create and Run Java Projects

The output of this code is as follows:

Converting Numbers to Strings:
Sometimes you need to convert a number to a string because you need to operate on
the value in its string form.

The following is an easy way to convert an integer variable to a string:

int i;
String s2 = String.valueOf(i);

Also, the class method, toString(), converts its primitive type to a string. For example:

int i;
double d;
String s3 = Integer.toString(i);
String s4 = Double.toString(d);

The following screenshot displays how the Android Studio as compiler will allow us to
convert the value of one type to another primitive type:

2-27

Create and Run Java Projects AND-404

Lesson 3: Control Flow Statements

· Introduction

· IF – Else Statement

· If…Else and Else…If... Statement

· If Else and Logical Operators

· Switch Statement

· While Loop

· While and Do-while Loop

· For Loop

· The Break Statement

· The Continue Statement

3-1

Control Flow Statements AND-404

Introduction

that they appear. ; however, break up the flow of execution by employing
decision making, looping, branching, and enabling your program to conditionally execute
particular blocks of code. This section describes the decision-making statements (if-then, if-
then-else, switch), the looping statements (for, while, do-while), and the branching statements
(break, continue, return) supported by the Java programming language. This lesson will explain
how these control flow statements can control the work of Java programs.

The following table includes some Boolean operators that will help in control flow of the
Java program:

Operator Name

== Equal to

!= Not Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

If – Else Statement
The if- else statement is the most basic of all the control flow statements. It tells your
program to execute a certain section of code only if a particular test evaluates to true.

3-2

Control Flow Statements

The If statement will include Boolean condition like If (x>5), here in this example if x is greater
than 5 the program will execute a special part of Java program; otherwise, if x is not greater
than 5 the Java program will execute the part which belongs to else statement.

In the following example x=30, assume that If statement includes a condition x<20, if
this condition is true the program will execute the program part, which belongs to the If
statement; which means it will print “This is if statement”. However, here x=30 meaning that
the If condition x<20 is Not true; therefore, the Java workflow will move to execute the part
which belongs to else statement. So, in this case, it will print “This is else statement”.

package com.example;

public class MyClass {
 public static void main(String args[]){
 int x = 30;

 if(x < 20){

 System.out.print(“This is if statement”);
 }

 else{
 System.out.print(“This is else statement”);
 }
 }
}

3-3

Control Flow Statements AND-404

The result of this code is as follows:

If…Else and Else…If... Statement:
If statement is also called “if-then” statement. This statement is the most basic of all the
control flow statements. It tells your program to execute a certain section of code only if a
particular test evaluates to true.

An If-statement can be followed by an optional else-if-else statement, which is very useful
to test various conditions using a single if-else-if statement.

The following example displays how if-else and else-if statements work:

package com.example;

public class MyClass {
 public static void main(String args[]){
 int x = 30;

 if(x == 10){System.out.println(“Value of X is 10”);}
//X is not equal 10 because it is equal 30

 else if(x > 20){System.out.println(“Value of X is > 20”);}

//Yes, x greater than 20 because it is equal to 30

 else if(x < 15){System.out.println(“Value of X is < 15”);}

//X is not less than 15 because it is equal to 30

 else if(x < 13){System.out.println(“Value of X is < 13”);}

//X is not less than 13 because it is equal to 30

 else if (x > 17){System.out.println(“Value of X is > 17”);}

//Yes, x greater than 17 because it is equal to 30

 else {System.out.println(“x is not equal to 10”);}

 }
 }

3-4

Control Flow Statements

The result of this program will be as follows:

In the previous Java application we have two else if statements that have true results, but
because the Java compiler reads the code from top to bottom, line by line. When any of if or
else if statements have true value the compiler will move with the response action outside
the last else and complete any remind part of the Java code.

Here in this program, when the Java compiler found true value in the else if(x > 20), it
operates the action for this else-if-statement “System.out.println(“Value of X is > 20”)
and then it avoids, another else if statements even if it has true value, and then it moved to
whatever is the last else statement{System.out.println(“x is not equal to 10”)which

If Else and Logical Operators
We can use logical operators like AND ”&&” and OR “| |” If you have two conditions that must
be true or one of them is enough to be true respectively. Here, by using the logical operators
IF statement you can test more than one condition at the same time.

The following example using “&&” logical operator to guarantee the two conditions must be true:

package com.example;
public class MyClass {
 public static void main(String args[]){
 int Age = 18;
 int DOB = 1998;

 if(Age >= 18 && DOB>=1998){System.out.print(“He is Authorized”);}
 else{
 System.out.print(“He is NOT Authorized”);
 }

 }

 }

3-5

Control Flow Statements AND-404

Here in the above code, the two conditions are true, therefore the result will be as follows:

If you change the age value to be 16 in “int Age = 16;” then run the application again you will get
the following result:

We can replace the AND operator “&&” with OR operator “| |” in the same Java application, where
the application will be as follows”:

package com.example;

public class MyClass {

 public static void main(String args[]){
 int Age = 16;
 int DOB = 1998;

 if(Age >= 18 || DOB>=1998) {

 System.out.print(“He is Authorized”);
 }

 else{
 System.out.print(“He is NOT Authorized”);
 }

 }

 }

Here since we are using OR operator “| |” and one of the two conditions is true the result
will be as follows:

3-6

Control Flow Statements

Switch Statement:
The switch statement can have a number of possible execution paths. A switch works
with the byte, short, char, and int data types. It also works with the String class, and a few
special classes that wrap certain types: Character, Byte, Short, and Integer.

The following code example, declares an int named day whose value represents a day. The
code displays the name of the day, based on the value of day, using the switch statement.

package com.example;

public class MyClass {
 public static void main(String args[]){

 int day = 3;
 String DayString;
 switch (day) {
 case 1: DayString = “Sunday”;
 break;
 case 2: DayString = “Monday”;
 break;
 case 3: DayString = “Tuesday”;
 break;
 case 4: DayString = “Wednesday”;
 break;
 case 5: DayString = “Thursday”;
 break;
 case 6: DayString = “Friday”;
 break;
 case 7: DayString = “Saturday”;
 break;
 default: DayString = “Invalid Day”;
 break;
 }
 System.out.println(DayString);

 }

 }

3-7

Control Flow Statements AND-404

The output of run this code is as follows:

The body of a switch statement is known as a switch block. A statement in the switch block
can be labeled with one or more case or default labels. The switch statement evaluates its
expression, and then executes all statements that follow the matching case label.

If we have changed the int day = 3; to int day = 9; since we don’t have case 9, which means that the
default part at the last line of switch statement will be working. And the run result will be as follows:

While Loop:
A while statement depends on a Boolean expression, which must return a Boolean value.
If the expression evaluates to true, the while statement executes the statement(s) in
the while block. The while statement continues testing the expression and executing its
block until the expression evaluates to false.

while (Boolean Expression)

{

 while block (Java Statements)

}

3-8

Control Flow Statements

The following example shows using the while statement to print the values from 0 through 10:

package com.example;

public class MyClass {

 public static void main(String args[]){

 // While Loop example by “Android ATC”

 int count =0;

 while (count <11)

 {

 System.out.println(“count = “ + count);

 count ++;

 }

 System.out.println(“Finish”);

 }

 }

3-9

Control Flow Statements AND-404

The result for this code is as follows:

Do-while Loop
The difference between do-while and while is that do-while evaluates its expression at the
bottom of the loop instead of the top. Therefore, the statements within the do block are
always executed at least once.

do {
 statement(s)
} while (expression);

The following example using the do-while statement to print the values from 0 through 10:

package com.example;

public class MyClass {
 public static void main(String args[]){

// do - While Loop example by “Android ATC”

 int count = 0;
 do {
 System.out.println(“Counter is: “ + count);
 count++;
 }
 while (count < 11);

 }

}

3-10

Control Flow Statements

The result for this code is as follows:

For Loop
A for statement provides a compact way to iterate over a range of values. Programmers
often refer to it as the “for loop” because of the way in which it repeatedly loops until a

 for statement can be expressed as
follows:

for (initialization; termination; increment)

{

 statement(s)

}

When using this version of the for statement, keep in mind that:

· The initialization expression initializes the loop; it’s executed once, as the
loop begins.

· When the termination expression evaluates to false, the loop terminates.

· The increment expression is invoked after each iteration through the loop; it is
perfectly acceptable for this expression to increment or decrement a value.

3-11

Control Flow Statements AND-404

The following example is using the for loop statement to print the values from 0 through 10:

package com.example;

public class MyClass {

 public static void main(String args[]) {

 // For Loop example by “Android ATC”

 for (int count = 0; count < 11; count++)

 {

 System.out.println(“Count is: “ + count);

 }

 }

}

The runt result for this code is as follows:

3-12

Control Flow Statements

The Break Statement
The break statement allows you to exit a loop from any point within its body, bypassing its
normal termination expression. When the break statement is encountered inside a loop,
the loop is immediately terminated, and program control resumes at the next statement
following the loop. It can be used in any type of loop like While, do-While, and for loop.

The following example displays using the break statement, where when the count value will
be equal to 5, the break statement will work and the while loop is immediately terminated,
and program control resumes at the next statement following the while loop:

package com.example;

public class MyClass {

 public static void main(String args[]){

// Break example by “Android ATC”

 int count =0;

 while (count <11)

 {

 System.out.println(“count = “ + count);

 count ++;

 if (count==5) break;

 }

 }

}

3-13

Control Flow Statements AND-404

The runt result for this code is as follows:

The Continue Statement
The continue statement will cause control to go directly to the test condition and then continue
the looping process. In the case of the for-loop, the increment part of the loop continues.
One good use of continue is to restart or skip a statement sequence when an error occurs.

In the following example, the result of the next Java application will print the count value
from 0 till 7 except 4:

package com.example;

public class MyClass {

 public static void main(String args[]) {

 // For Loop example by “Android ATC”

 for (int count = 0; count < 8; count++)

 {

 if(count==4)continue;

 System.out.println(“Count is: “ + count);

 }

 }

}

3-14

Control Flow Statements

The runt result for this code is as follows:

3-15

Control Flow Statements AND-404

Lesson 4: Methods, Arrays and Java Class

· Introduction

· Method Structure

· Call Method by Value

· Call Method by Reference

· Arrays

· Enter Data to a Java Program

· Object Oriented Programming (OOP) concepts

· Java Class

4-1

Methods, Arrays and Java Class AND-404

Introduction
A Java method is a collection of statements that are grouped together to perform an operation.
When you call the System.out.println() method, for example, the system actually executes
several statements in order to display a message on the console.

Each method has its own name and when this name is encountered in a program, the execution

it returns to the area of the program code from where it was called, and the program continues
to the next line of code.

The following example displays using the method in a simple way:

package com.example;

// Java Methods Created by Android ATC

public class MyClass {

 public static void main(String args[]) {
 ATC();
 ATC();
 ATC(); }

 static void ATC()
 {
 System.out.println(“Welcome to Android ATC”);

 return;
 }
}

In this example, the method name was ATC and that method was supposed to print “Welcome
to Android ATC” text each time it was called. In this example, it was called three times; therefore
the result of this code is the following snapshot:

4-2

Methods, Arrays and Java Class

Method Structure
Below is the structure of Java method:

 It will be explained in the following lessons.

 It is a keyword, which is supposed to set the Method to a static method (by
default all methods are not static). The static keyword can be used while declaring a function,
variables or even Classes. It will be explained in the following lessons.

Return Type: It can be any primitive or user data type. In case this function did not return any
value, you can use the keyword “void” to indicate that this function does not return anything.

Method parameters: Every function can have zero, one or more parameters, which can be used
in your method body.

Return value: It represents the value returned by your method.

In the following example, the method name is “formula1“which includes two integer numbers
n1 and n2 as parameters. These numbers will be used in the “fromula1”method to achieve the
following calculation “(n1+n2)/2”. We can call this method by using its name “formula1”to use it
to make the same calculation for different values. Think of a method as a subprogram that acts
on data and often returns a value.

4-3

Methods, Arrays and Java Class AND-404

When we will run the following Java code:

package com.example;

// Java Methods Created by Android ATC

public class MyClass {

 public static void main(String args[]) {

 int a = 10;

 int b = 6;

 int c = equation1(a, b);

 System.out.println(“Equation Value = “ + c);}

 /** returns the result of the below equation*/

 public static int equation1(int n1, int n2) {

 int t=(n1+n2)/2;

 return t;

 }}

We will get the following result:

Return command, which is highlighted in yellow in the above program; the execution returns to
the area of the program code from where it was called along with the calculated result returned
by the equation1 method for values “a” and “b”. Then, the program continues on to the lines of
code after the equation method.

4-4

Methods, Arrays and Java Class

If we repeated the same Java code with some of the following changes:

package com.example;

// Java Methods Created by Android ATC

public class MyClass {

 public static void main(String args[]) {

 int a = 10;

 int b = 6;

 int c = equation1(a, b);

 System.out.println(“Equation Value = “ + c);}

 /** returns the result of the below equation*/

 public static int equation1(int n1, int n2) {

 int t=(n1+n2)/2;

 int s=n1+n2;

 return s;

Here, we added a new formula “s=n1+n2”. We have in the equations1 method two values, t=8
and s=16. Which value will be returned by equations1 method if we call it? The answer is: the
value of 16 will be retuned by equation1 method and that value is being assigned to variable c
so c will now hold the value of 16.

The following will be the result of the previous Java code:

4-5

Methods, Arrays and Java Class AND-404

Call Method by Value
If you check the following Java code: Can you predict what is the value of a variable “a” if we run
the following code?

public class lesson4 {

 public static void main(String args[]) {

 int a=10;

 increase(a);

 System.out.println(“a =”+a);

 }

 /** returns the result of the below equation*/

 public static int increase(int p) {

 p=p+1;

System.out.println(“P =”+p);

 return p;

 }}

The answer is a=10, the following is the output of the java code:

Here, when the variable a was declared as an integer variable with value equal to 10, this value
has been reserved on the memory as a=10, and when the program called the method “increase”,
this method copied the value of the variable “a” to the variable “p” ,then through the formula
(p=p+1) the value of the variable “p” becomes 11. However, the value of “a” is still equal to 10.
The variable “a” passed as arguments still hold its original value. This is what is called call or
pass by value.

4-6

Methods, Arrays and Java Class

Let us look for another simple program and examine its output:

public class lesson4 {

 public static void main(String args[]) {

 int M =3;

 System.out.println (“Value of M before calling increment() is “+M);

 increment(M);

 System.out.println (“Value of M after calling increment() is “+M);

 }

 public static void increment (int a) {

 System.out.println (“Value of a before incrementing is “+a);

 a= a+1;

 System.out.println (“Value of a after incrementing is “+a);

 }

}

The following will be the run result of the previous Java code:

4-7

Methods, Arrays and Java Class AND-404

Call Method by Reference
A method gives a copy of the value storage by the argument and not the original argument, so
passing by value means passing by a copy of an argument. In contrast, to pass by reference
means pass a reference to the original variable (Object), i.e. passing the address in memory of
the original variable (the original value).

class Number {
 int x;
}
public class test01 {
 public static void main(String args[]) {

 Number a = new Number();
 a.x=3;
 System.out.println(“Value of a.x before calling increment() is “+a.x);
 increment(a);
 System.out.println(“Value of a.x after calling increment() is “+a.x);
 }

 public static void increment(Number n) {
 System.out.println(“Value of n.x before incrementing x is “+n.x);
 n.x=n.x+1;
 System.out.println(“Value of n.x after incrementing x is “+n.x);
 }
}

The run result of this code is as follows:

The changes made to the variable x that was a part of the object in the increment () method
had an effect on the original variable (the object which contained that integer variable) that

4-8

Methods, Arrays and Java Class

was passed as an argument. The difference lies in the type of the variable that was passed as
an argument. int is a primitive data type while Number is a reference data type. Primitive data
types in Java are passed by value while reference data types are passed by reference.

The concept of call by reference can be better understood if one tries to look into what a
reference actually is and how a variable of a class type is represented. When we declare a
reference type variable, the compiler allocates only space where the memory address of the
object can be stored. The space for the object itself isn’t allocated. The space for the object
is allocated at the time of object creation using the new keyword. A variable of reference type
differs from a variable of a primitive type in the way that a primitive type variable holds the
actual data while a reference type variable holds the address of the object which it refers to and
not the actual object.

Let us look at another simple program and examine its output:

class Number {
 int x;
}
public class test01 {

 public static void main (String[] args) {
 Number a = new Number();
 a.x=4;
 System.out.println(a.x);
 Number b=a;
 b.x=5;
 System.out.println(b.x);
 }
 }

The run result of this code is as follows:

4-9

Methods, Arrays and Java Class AND-404

Arrays
So far, what you have studied each variable stored one data item. If we wish to store a large
number of data items for the same variable, we need to use the array. An array is used to store
a group of values, all of which have the same data type. The length of an array is established

Much like C or C++, Java arrays are indexed numerically on a 0-based system. This means the

Example:

public class ArrayAndroidATC {

 public static void main (String[] args) {
 int[] x;

 // allocates memory for 10 integers
 x = new int[10];

 x[0] = 100;

 // and so forth
 x[1] = 200;
 x[2] = 300;
 x[3] = 400;
 x[4] = 500;
 x[5] = 600;
 x[6] = 700;
 x[7] = 800;
 x[8] = 900;
 x[9] = 1000;

 System.out.println(“Element at index 0: “+ x[0]);
 System.out.println(“Element at index 1: “+ x[1]);
 System.out.println(“Element at index 2: “+ x[2]);
 System.out.println(“Element at index 3: “+ x[3]);
 System.out.println(“Element at index 4: “+ x[4]);
 System.out.println(“Element at index 5: “+ x[5]);
 System.out.println(“Element at index 6: “+ x[6]);
 System.out.println(“Element at index 7: “+ x[7]);
 System.out.println(“Element at index 8: “+ x[8]);
 System.out.println(“Element at index 9: “+ x[9]);

 }
}

4-10

Methods, Arrays and Java Class

The run result of this code is as follows:

Declaring a Variable to Refer to an Array:
The preceding program declares an array (named testArray) with the following line of code:

// declares an array of integers

int[] TestArray;

Like declarations for variables of other types, an array declaration has two components: the
array’s type and the array’s name. An array’s type is written as type[], where type is the data
type of the contained elements; the brackets are special symbols indicating that this variable
holds an array. The size of the array is not part of its type (which is why the brackets are empty).
An array’s name can be anything you want. As with variables of other types, the declaration
does not actually create an array; it simply tells the compiler that this variable will hold an array

Similarly, you can declare arrays of other types:

byte[] testArrayOfBytes;

short[] testArrayOfShorts;

long[] testArrayOfLongs;

double[] testArrayOfDoubles;

boolean[] testArrayOfBooleans;

char[] testArrayOfChars;

String[] testArrayOfStrings;

4-11

Methods, Arrays and Java Class AND-404

Note: The following line uses an array initialize to initialize the array a[] , the length of the array
in the below statement. It is automatically calculated:
int[] a= { 3, 34, 7, 9};

Can you expect the run result of this code, which is as follows?

public class AndroidArray {

 public static void main (String[] args) {

 int[] a= { 3, 34, 7, 9};

 System.out.println(a[2]);

 }

}

The run result of this code is as follows:

The following is an example about how to loop through the elements of an array.

public class ArrayLoop {

 public static void main (String[] args) {

 int[] a = {3, 4, 7, 9};

 for (int x : a) {

 System.out.println(x);

 }

 }}

4-12

Methods, Arrays and Java Class

The result of this code is as follows:

Enter data to a Java program:
We can enter any data to Java program through the keyboard or other input devices using
Scanner class.

The following displays how we can use scanner class to get some data from user for a java
program.

First of all, you have to create an instance from the scanner:

Scanner scanner = new Scanner(System.in);

After writing this line of code, Android studio will notify you that the scanner cannot be resolved; this

There are two ways to include this library:

1. Write the following code before your class declaration:
 import java.util.Scanner;

2. Place the cursor on the Scanner object, and click the shortcut below to include the
necessary library automatically.

· On Windows click Cltr+1.

· On Mac OS X click Cmd+1.

·

4-13

Methods, Arrays and Java Class AND-404

You will get the below code at the start of the code:

Then, we will add: Scanner scanner = new Scanner(System.in); to the java code.
The following example prints the exam result depending on the score which is entered to it,

or equal to 70 and “Fail: You May Repeat the Exam after 24 Hours” if the score is less than 70.

import java.util.Scanner;

public class Main {

 public static void main (String args[]){

 Scanner scanner = new Scanner(System.in);

 System.out.println(“Enter the Exam Score:”);

 score = scanner.nextInt();

 if(score>=70){

lication Developer “);

 }

 else {

 System.out.println(“Fail: You May Repeat the Exam after 24 Hours”);

 }

 }

 }

4-14

Methods, Arrays and Java Class

The run result of this code is as follows:

Type 80 then press “Enter” key, you will get the following result:

Object-Oriented Programming (OOP) Concepts
If you’ve never used an object-oriented programming language before, you’ll need to learn a
few basic concepts before you can begin writing any code. This lesson will introduce you to
objects, classes, inheritance, interfaces, and packages. Each discussion focuses on how these
concepts relate to the real world, while simultaneously providing an introduction to the syntax
of the Java programming language. The basics are necessary to learn before starting Android
application development.

What Is an Object?
Objects are the key to understanding object-oriented technology. Look around right now and

Real-world objects share two characteristics: They all have state and behavior. Computers have
state (type, color, speed, capacity) and behavior (processing, playing media, browsing). Car also
has state (current gear, current pedal cadence, and current speed) and behavior (changing gear,
changing pedal cadence, applying brakes). Identifying the state and behavior for real-world
objects is a great way to begin thinking in terms of object-oriented programming.

4-15

Methods, Arrays and Java Class AND-404

What Is a Class?

models the state and behavior of a real-world object. It intentionally focuses on the basics, showing
how even a simple class cans cleanly model state and behavior. In this lesson you will discuss Java
class in details. In the previous lessons you have already studied classes practically.

What Is Inheritance?
Inheritance provides a powerful and natural mechanism for organizing and structuring your
software. This section explains how classes inherit state and behavior from their superclasses
or parent classes, and how to derive one class from another using the simple syntax provided by
the Java programming language. The class, which inherits the state and behavior from another
class, is known as child or derived class and the class from which the state and behavior are
inherited is called parent or base class.

The real day example of inheritance can be an Employee class and the Developer, Manager,
Designer classes. In this example Employee is the parent class and all the other classes i-e
Developer, Manager, Designer are the child classes because they are already employees and
hold the attributes of the Employee class.

Now you will study the same example of inheritance with the help of Java code. Make a simple
Employee class with a single property called salary like the following:

class Employee{

}

Now add another class “Developer” which will be a child class. To make any class a child class
of any parent class the “extend” keyword is used as shown below:

class Develper extends Employee {

int bonus = 1000;

public static void main(String args[]){

Programmer p=new Programmer();

 System.out.println(“Programmer salary is:”+p.salary);

 System.out.println(“Bonus of Programmer is:”+p.bonus);

} }

4-16

Methods, Arrays and Java Class

In the code above, Employee is the parent class and Developer is the child class. Inside Developer
class, we have main() function. You can see in the code above that the variable inside the
parent class is accessible from within the child class. p.salary prints the value of the salary
variable which is inside the parent class and it also prints the value of bonus variable which is
inside the child class itself. In this way, the child class has its own variables and functions as
well as it can access the variables and functions of the parent class.

Following will be the output of the code above.

Programmer salary is: 50000.0

Bonus of programmer is: 10000

More practical examples of inheritance will be explained later in this lesson under the section of Class.

What Is an Interface?
An interface is a contact between a class and the outside world. When a class implements an
interface, it promises to provide the behavior published by that interface. In the interface, you

inside the interface. In this way, you can achieve full abstraction and multiple inheritances in
Java. Generally, without interface, multiple inheritances is not allowed in Java.

In order for any class to use the interface, “implements” keyword is used. The following is the
example of interface using Java code.

interface displayable{

void display();

}

class InterfaceDemo Implements displayable{

public void display (){

System.out.println(“Hello World”);

}

public static void main(String args[]){

InterfaceDemo obj = new InterfaceDemo ();

obj. display ();

 }

}

4-17

Methods, Arrays and Java Class AND-404

As you can see in the code above, the “displayable” is the interface and it declares a method name

was only declared in the interface. Following will be the output of this code.

Hello World

The following diagram explains the relationships between classes and interface :

What Is a Package?
A package is a namespace for organizing classes and interfaces in a logical manner. Placing
your code into packages makes large software projects easier to manage. Packages can be
categorized in two forms

1. Built-in package

2.

Built-in packages are provided by programming languages like Java and can be used within your
code to reuse the already provided code, thus speeding up the development. Few of the built-in
packages are java, lang, awt, javax, swing, net, io, util, sql… etc.

 interfaces… etc created by you.

Java Class

individual objects all of the same kind. In this section, you will study a practical example of class
and also practice other concepts like inheritance you have studied previously. The following is
a practical exercise:

1. Open Android Studio

2. To create an Android project Click : “Start a new Android Studio project” ,to get the
following dialog box:

4-18

Methods, Arrays and Java Class

3. Write the Application Name: JavaClasses, Company Domain which in this case consists
of three words separated by dot. In this example project, write androidatc.com and the
Project location you should select where the project will be saved, then click Next.

4. In the next dialog box, there are some details about the description of the Android device,
on which this application will run on. You will learn about this dialog box in the Android

Next.

4-19

Methods, Arrays and Java Class AND-404

5. “Empty Activity” and
click Next.

6.
explained in details in the Android Application Development course- click Finish.

4-20

Methods, Arrays and Java Class

7. After clicking the Finish button, creating the application process starts and you will
see the following :

8. Then the following screen shows:

9. To create Java Library, click on File menu New New Module...

4-21

Methods, Arrays and Java Class AND-404

10. In the dialog box below, select “Java Library” and click Next.

11. In the following dialog box, enter the “Library name”: JavaLib and the “Java class
name”:MyClass then click Finish.

4-22

Methods, Arrays and Java Class

You will get the following illustration on the left side of the Android Studio:

12. Now, right click on package name, then “New” and then “Java Class” as shown in
the image below.

4-23

Methods, Arrays and Java Class AND-404

13. Enter the name “AndroidATC” as the name of class in the window which opens
after the previous step. This will add a new class named “AndroidATC” under
the package. Open this newly created class and add functions inside this

getCompanyInfo() will return the brief introduction of Android ATC and the
second function getContactInfo() will return contact information of Android
ATC. The class will now look like the following:

package com.example;
public class AndroidATC {
 public String getCompanyInfo(){
 return “Android Advanced Training Consultants (Android ATC) provides
courses and assessment exams “ +
 “to certify the competencies of current and prospective employees.”;
 }

 public String getContactInfo(){
 return “Phone = +1-214-393-9225 \n Skype = androidatc \n Email = info@
androidatc.com”;
 }

}

Note the following in the code above.

· The package “com.example” name is included in the very beginning of the class.

· Both functions are returning the Strings using the “return” keyword.

· Both functions have “String” as the return type, which means that whenever these
functions are called, they will return a “String” type value which are the company
information and the contact information respectively.

14. Now similarly, add another class named “AndroidATCTrainings” as you did in

of type “String” named “courses”. This will contain the courses being offered at
AndroidATC. The array will look like the following:

public String[] courses = {“Java Fundamentals for Android”,

 “Android Application Development”,

 “Android Security Essentials”,

 “Monetize Android Applications” };

4-24

Methods, Arrays and Java Class

In this way, you declared (reserved memory) as well as initialized (assigned values) an array
of type String with the names of courses. Similarly add another array that will contain the

15. Now, add a function getCourse() in this class that will take a course number as the
argument and return the course at that number from the array of courses. This will
look like the following:

public String getCourse(int courseNumber){

 return courses[courseNumber];

}

16.

}

17. As you studied in the section of inheritance, any class that acts as a child class
uses “extend” keyword to inherit the properties from parent class. So now, you
will make AndroidATCTrainings class as the child class of AndroidATC class by
modifying the starting line of AndoidATCTrainings class like the following:

public class AndroidATCTrainings extends AndroidATC{

 }

4-25

Methods, Arrays and Java Class AND-404

18. This will turn AndroidATCTrainings class as the child class of AndroidATC. Since
AndroidATC has the functions that return the common information that is the
same for all training centers, this characterizes a parent class. Any class can use
this common information by making AndroidATCTrainings as its parent class. The
following is a complete code of AndroidATCTrainings class.

public class AndroidATCTrainings extends AndroidATC{

 public String[] courses = {

“Java Fundamentals for Android”,

 “Android Application Development”,

 “Android Security Essentials”,

 “Monetize Android Applications”};

 public String getCourse(int courseNumber){

 return courses[courseNumber];

 }

 }

}

19. Now, open your “MyClass” which was created when you created the library for your
project in the beginning. Add the “main” function inside this class.

public static void main(String[] args) {

 }

4-26

Methods, Arrays and Java Class

int courseNumber = 3;

20. Now inside the main function, make an object of AndroidATCTrainings class like
the following:

AndroidATCTrainings androidATCTrainings = new AndroidATCTrainings();

21. Now, you can call the functions from AndroidATCTrainings class as well as
AndroidATC class since AndroidATC is the parent class of AndroidATCTrainings
class and the object of AndroidATCTrainings class has access to the
public, protected functions of AndroidATC class. Start calling the functions
AndroidATCTrainings class using its object you created in previous step.

androidATCTrainings.getCourse(courseNumber)

22. In this line, you are passing “courseNumber” as argument in getCourse() function,
which will return the course at index 3 inside the “courses” array which is “Monetize

greater than the respective array size, your program will display error. So, it better to put the
checks for valid value before passing to the function like the following:

if(courseNumber>=0 && courseNumber<= androidATCTrainings.courses.length-1) {

 }

4-27

Methods, Arrays and Java Class AND-404

23. Now, you will call the functions of AndroidATC class (parent class) using the same
object of AndroidATCTrainings class (child class) as below:

androidATCTrainings.getCompanyInfo()

androidATCTrainings.getContactInfo()

You can use “System.out.println()” function to print all these values in the console.

24. Following is the complete code of MyClass.

package com.example;

public class MyClass {

 public static void main(String[] args) {

 int courseNumber = -3;

 AndroidATCTrainings androidATCTrainings = new AndroidATCTrainings();

 System.out.println(“Company Information\n”);

 System.out.println(androidATCTrainings.getCompanyInfo());

 System.out.println(“Contact Information\n”);

 System.out.println(androidATCTrainings.getContactInfo());

 if(courseNumber>=0 && courseNumber<= androidATCTrainings.courses.length-1)

{

 System.out.println(“Course Information\n”);

 System.out.println(androidATCTrainings.getCourse(courseNumber));

 }else{

 System.out.println(“Enter the valid course number”);

 }

-

 }else{

 }

 }

}

4-28

Methods, Arrays and Java Class

25. Now right click on MyClass and select “Run MyClass.main()” to run your code.

26. You will see the following output printed in the console.

4-29

Methods, Arrays and Java Class AND-404

Now, if you give invalid (greater or lesser the array size) values to courseNumber and

The following are important points to remember in this practical example

1. AndroidATC is the parent class.

2. AndroidATCTrainings is the child class.

3. MyClass is the class having the main function.

4. The object of AndroidATCTrainings class can use public and protected functions of

5. A function takes argument to be used inside functions and can return values (Strings
in this case)

4-30

Methods, Arrays and Java Class

AndroidATC class. This is practical demonstration of inheritance.

Now, that you have completed the Java Fundamentals for Android Development course,
you are ready to take the Android application development course.

To study this course you should select one of the following two choices:

Alternative 1: “Instructor-led training course”, Android ATC courses are available at more than
130 computer training centers located worldwide, to register for this course, kindly go to:
http://www.androidatc.com/_training_center.php and select your country on the list, to
find the nearest Android ATC authorized training center, kindly contact them directly and ask
them about the courses schedule and training price. This list is continuously updated.

Alternative 2: You may choose to study the course on your own by ordering the self-study
guide from the Android ATC Web site, kindly go to “www.androidatc.com” then select the
“SELF STUDY” tab and place your order online for the “Android Application Development”
book, where this book is only available in hard copy format. The book should be delivered to
you in about four working days. Kindly note: There is no software format (PDF) available for
this book.

For more information, don’t hesitate to contact us by email “support@androidatc.com”.

3-15

AND-404

